Differentiate each the following from first principles :
(i) e−x
(ii) e3x
(iii) eax+b
(iv) x ex
(v) x2 ex
(vi) ex2+1
(vii) e√2x
(viii) e√ax+b
(ix) a√x
(x) 3x2
(i) We have,
f(x)=e−x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0e−(x+h)−e−xh=limh→0e−x(e−h−1)h=limh→0−e−x(e−h−1)−h
=−e−x [limh→0eθ−1θ=1]
(ii) We have,
f(x)=e3x
∵ f′(x)=limh→0 f(x+h)−f(x)h
=limh→0e3(x+h)−e3xh=limh→0e3(x).e3h−33xh=limh→0e3(x+h)−33xh=limh→033(x)(e3h−1)h
Multiplying Numberator and Denominator by 3
=limh→0e3(x)e3h−13h [∵ limh→0e3h−13=1]
=3e3x
(iii) We have,
f(x)=eax+b
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0ea(x+h)+b−eax+bh
=limh→0eax×eah×eb−eax×ebh
=limh→0eb×eax(eah−1)h
=limh→0eax+b×a(eah−1)a.h
Multiplying Numerator and denominator by a
[∵ limh→0(eah−1)ah=1]
=aeax+b.
(iv) We have,
f(x)=xex
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h)e(x+h)−xexh
=limh→0xex.eh+hex.eh−xekh
=limh→0xex(eh−11)+hex+hh
=xex+ex=ex(x+1)
(v) We have,
f(x)=x2ex
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0x2exeh+h2.ex.eh+2xhexeh−x2exh
=limh→0 x2ex(eh−1)h+exeh(h2+2xh)h
[∵ eh−1h−1]
∴ x2ex+ex(0+2x)
=x2ex+2xex
=ex(x2+2x)
(vi) We have,
f(x)=ex2+1
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0e(x+h)2+1−ex2+1h
=limh→0ex2+h2+2xh+1−ex2+1h
=limh→0ex2+1(e2xh.eh2−1)h
=limh→0ex2+1(e2xh+h2−1)2xh+h2×2xh+h2h
∵ h→0
⇒ 2xh+h2=0
and lim0→0eθ−1θ=1
=limh→0ex2+1.1×2x+h=2xex2+1
(vii) We have,
f(x)=e√2x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0e√2(x+h)−e√2xh
=limh→0e√2x(e√2(x+h)−√2x−1)h
=limh→0√2x(e√2(x+h)−√2x−1)√2(x+h)−√2x×√2(x+h)−√2xh
Multiplying Numerator and Denominator by √2(x+h)−√2x
∵ h→ ⇒ √2(x+h)−√2x⇒0
and limθ→0e0−1θ=1
∴ =limh→0e√2x×√2(x+h)−√2xh
Again Multiplying Numerator and Denominator by √2(x+h)+√2x
∴ =limh→0e√2x×√2(x+h)−√2xh×√2(x+h)+√2x√2(x+h)+√2x
=e√2x×12√2x
(viii) We have,
f(x)=eax+b
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0e√a(x+h)+b−e√ax+bh
=limh→0 e√a(x+h)+b(e√a(x+h)+b−√ax+b−1)h
=limh→0e√ax+b×e√a(x+h)+b−√ax+b−1√a√(x+h)+b−√ax+b×√a(x+h)+b−√ax+bh
Multiplying Numerator and Denominator by
√a(x+h)+b−√ax+b
∵ h→0
∴ √a(x+h)+b−√ax+b=0
and lim0→0e0−1θ=1
=limh→0√ax+b×1×√a(x+h)+b−√ax+b√a(x+h)+b+√ax+b×√a(x+h)+b−√ax+bh
Again multiplied Numerator and Denominator by
√a(x+h)+b+√ax+b
=limh→0×a(x+h)+b−(ax+b)h×1(√a(x+h)+b+√ax+b)
=e√ax+b×a2√ax+b
=ae√ax+b2√ax+b
(ix) a√x
f(x)=a√x=e√x log a
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0e√x+hlog a−e√xlog ah
=limh→0 e√xlog a e√x+hlog a−√xlog ah=limh→0 e√x log a e(√x+h−√x)log a−1h
Multiplying numerator and denominator by
(√x+h−√x) log a
f(x)=limh→0e√x log ae(√x+h−√x) log a−1h(√x+h−√x) log a(√x+h−√x) log a
=e√x log alimh→0e(√x+h−√x) log a−1h(√x+h−√x) log a limh→0 log a(√x+h−√x)h
=e√x log alimh→0 log a (√x+h−√x)h
Multiply numerator and denominator by √x+h−√x
f(x)=e√x limh→0 a(√x+h−√x)h(√x+h+√x)(√x+h+√x)
=e√x log alimh→0 log a hh(√x+h+√x)
=e√x log a log a2√x
=a√x2√x loge a
(x) We have,
f(x)=3x2=ex2 log 3
∵ f′(x)=limh→0 f(x+h)−f(x)h
=limh→0 e(x+h)2 log 3−3x2 log 3h
=limh→0 ex2 log 3[(e(x+h)2−x2)log 3−1]h
=limh→0 ex2 log 3 [e(x+h)2−x2]log 3−1(x+h)2−x2×(x+h)2−x2h
Multiplying Numerator and Denominator by (x+h)2−x2
∴ limh→0 ex2 log 3×(x+h+x)(x+h−x)h
=ex2 log 3×2x
=2x ex2 log 3
=2x 3x2 log 3