wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each the following from first principles :

(i) ex

(ii) e3x

(iii) eax+b

(iv) x ex

(v) x2 ex

(vi) ex2+1

(vii) e2x

(viii) eax+b

(ix) ax

(x) 3x2

Open in App
Solution

(i) We have,

f(x)=ex

f(x)=limh0f(x+h)f(x)h

=limh0e(x+h)exh=limh0ex(eh1)h=limh0ex(eh1)h

=ex [limh0eθ1θ=1]

(ii) We have,

f(x)=e3x

f(x)=limh0 f(x+h)f(x)h

=limh0e3(x+h)e3xh=limh0e3(x).e3h33xh=limh0e3(x+h)33xh=limh033(x)(e3h1)h

Multiplying Numberator and Denominator by 3

=limh0e3(x)e3h13h [ limh0e3h13=1]

=3e3x

(iii) We have,

f(x)=eax+b

f(x)=limh0f(x+h)f(x)h

=limh0ea(x+h)+beax+bh

=limh0eax×eah×ebeax×ebh

=limh0eb×eax(eah1)h

=limh0eax+b×a(eah1)a.h

Multiplying Numerator and denominator by a

[ limh0(eah1)ah=1]

=aeax+b.

(iv) We have,

f(x)=xex

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)e(x+h)xexh

=limh0xex.eh+hex.ehxekh

=limh0xex(eh11)+hex+hh

=xex+ex=ex(x+1)

(v) We have,

f(x)=x2ex

f(x)=limh0f(x+h)f(x)h

=limh0x2exeh+h2.ex.eh+2xhexehx2exh

=limh0 x2ex(eh1)h+exeh(h2+2xh)h

[ eh1h1]

x2ex+ex(0+2x)

=x2ex+2xex

=ex(x2+2x)

(vi) We have,

f(x)=ex2+1

f(x)=limh0f(x+h)f(x)h

=limh0e(x+h)2+1ex2+1h

=limh0ex2+h2+2xh+1ex2+1h

=limh0ex2+1(e2xh.eh21)h

=limh0ex2+1(e2xh+h21)2xh+h2×2xh+h2h

h0

2xh+h2=0

and lim00eθ1θ=1

=limh0ex2+1.1×2x+h=2xex2+1

(vii) We have,

f(x)=e2x

f(x)=limh0f(x+h)f(x)h

=limh0e2(x+h)e2xh

=limh0e2x(e2(x+h)2x1)h

=limh02x(e2(x+h)2x1)2(x+h)2x×2(x+h)2xh

Multiplying Numerator and Denominator by 2(x+h)2x

h 2(x+h)2x0

and limθ0e01θ=1

=limh0e2x×2(x+h)2xh

Again Multiplying Numerator and Denominator by 2(x+h)+2x

=limh0e2x×2(x+h)2xh×2(x+h)+2x2(x+h)+2x

=e2x×122x

(viii) We have,

f(x)=eax+b

f(x)=limh0f(x+h)f(x)h

=limh0ea(x+h)+beax+bh

=limh0 ea(x+h)+b(ea(x+h)+bax+b1)h

=limh0eax+b×ea(x+h)+bax+b1a(x+h)+bax+b×a(x+h)+bax+bh

Multiplying Numerator and Denominator by

a(x+h)+bax+b

h0

a(x+h)+bax+b=0

and lim00e01θ=1

=limh0ax+b×1×a(x+h)+bax+ba(x+h)+b+ax+b×a(x+h)+bax+bh

Again multiplied Numerator and Denominator by

a(x+h)+b+ax+b

=limh0×a(x+h)+b(ax+b)h×1(a(x+h)+b+ax+b)

=eax+b×a2ax+b

=aeax+b2ax+b

(ix) ax

f(x)=ax=ex log a

f(x)=limh0f(x+h)f(x)h

=limh0ex+hlog aexlog ah

=limh0 exlog a ex+hlog axlog ah=limh0 ex log a e(x+hx)log a1h

Multiplying numerator and denominator by

(x+hx) log a

f(x)=limh0ex log ae(x+hx) log a1h(x+hx) log a(x+hx) log a

=ex log alimh0e(x+hx) log a1h(x+hx) log a limh0 log a(x+hx)h

=ex log alimh0 log a (x+hx)h

Multiply numerator and denominator by x+hx

f(x)=ex limh0 a(x+hx)h(x+h+x)(x+h+x)

=ex log alimh0 log a hh(x+h+x)

=ex log a log a2x

=ax2x loge a

(x) We have,

f(x)=3x2=ex2 log 3

f(x)=limh0 f(x+h)f(x)h

=limh0 e(x+h)2 log 33x2 log 3h

=limh0 ex2 log 3[(e(x+h)2x2)log 31]h

=limh0 ex2 log 3 [e(x+h)2x2]log 31(x+h)2x2×(x+h)2x2h

Multiplying Numerator and Denominator by (x+h)2x2

limh0 ex2 log 3×(x+h+x)(x+hx)h

=ex2 log 3×2x

=2x ex2 log 3

=2x 3x2 log 3


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon