Differentiate each the following from first principles :
(i) 2x
(ii) 1√x
(iii) 1x3
(iv) x2+1x
(v) x2−1x
(vi) x+1x+2
(vii) x+23x+5
(viii) k xn
(ix) 1√3−x
(x) x2+x+3
(xi) (x+2)3
(xii) x3+4x2+3x+2
(xiii) (x2+1)(x−5)
(xiv) √2x2+1
(xv) 2x+3x−2
(i) We have,
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0f2x+h−2xh
=limh→0(2x−2x−2h)hx(x+h)
=limh→02(x−x−h)hx(x+h)
=limh→0−2hh.x(x+h)
=limh→0−2x(x+h)
=−2x2
(ii) We have,
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→01√x+y−1√xh
=limh→01√x+y−1√xh
=limh→0√x−√x+h√x√x+h.h×√x+√x+h√x+√x+h.h
=limh→0x−(x+h)√x√x+h.h(√x+√x+h)
=limh→0−h√x√x+h.h(√x+√x+h)
=limh→0−1x√x+y+√x(√x+h)
=limh→0−12x√x
=−12x−32
(iii) We have,
f(x) 1x3
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→01(x+h)3−1x3h
=limh→0x3−(x+h)3x3h(x+h)3
=limh→0x3−(x3+3x2h+3xh2+h3)x3h(x+h)3
=limh→0x3−x3−3x2−3xh−h2x3h(x+h)3
=limh→0−3x2−3xh−h2x3(x+h)3
=−3x2x6=−34
(iv) We have,
f(x)=x2+1x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h)2+1(x+h)−x2+1xh
=limh→0x[x2+h2+2xh+1]−(x2+1)(x+h)hx(x+h)
=limh→0x3+xh2+2x2h+x−x3−x−x2h−hhx(x+h)
=limh→0xh+2x2−x2−1x(x+h)
=x2−1x2=1−1x2
(v) We have,
f(x)=x2−1x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h)2−1(x+h)−x2−1xh
=limh→0x(x2+h2+2xh−1)−(x+h)(x2−1)x(x+h)h
=limh→0xh+2x2−x2+1x(x+h)
=x2+1x2=1+1x2
(vi) We have,
f(x)=x+1x+2
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h)+1(x+h)+2−x+1x+2h=limh→0(x+2)(x+h+1)−(x+1)(x+h+2)(x+h+2)(x+2)h
=limh→0(x2+2x+xh+2h+2+x)−(x2+xh+2x+x+h+2)(x+h+2)(x+2)h
=limh→0h(x+h+2)(x+2)h=1(x+2)2
(vii) We have x+23x+5
f(x)=x+23x+5
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h+2)3(x+h)+5−x+23x+5h=limh→0(3x+5)(x+h+2)−(x+2)(3x+3h+5)(3x+5)(3x+3h+5)h
=limh→0(3x2+5x+3xh+5h+6x+10)−(3x2+3xh+5x+6x+6h+10)(3x+5)(3x+3h+5)h
=limh→0−h(3x+h)(3x+3h+5)h=limh→0−1(3x+h)(3x+3h+5)=−1(3x+5)2
(viii) We have,
f(x)=kxn
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0k(x+h)n−kxnh
=k limh→0(xn+nxn−1h+(n−1)2xn−2h2+....)−xnh =[∵ (x+y)n=xn+nxn−1y...]
=k limh→0nxn−1+n(n−1)2!xn−2h+n(n−1)(n−2)3!xn−3h2....
=k nxn−1+0+0....=k nxn−1
(ix) We have,
f(x)=1√3−x
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→01√3−(x+h)−1√3−xh=limh→0√3−x−√3−(x+h)√3−x√3−(x+h)×h [Rationalising the numerator by √3−x+√3−(x+h)1]
=limh→0√3−x−√3−(x+h)√3−x√3−(x+h)h×√3−1+√3−(x+h)√3−x+√3−(x+h)
=limh→0(3−x)−(3−(x+h))√3−x√3−(x+h)×h(√3−x)+√3−(x+h)
=limh→0h√3−x√3−(x+h)×h(√3−x+√3−(x+h))
=1(3−x)×2√3−x=12(3−x)32
(x) We have,
f(x)=x2+x+3
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0{(x+h)2+(x+h)+3}−x2+x+3h
=limh→0x2+h2+2xh+x+h+3−x2−x−3h
=limh→02xh+h2+hh=limh→0h(2x+h+1)h=2x+0+1=2x+1
(xi) We have,
f(x)=(x+2)3
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h+2)3−(x+2)3h=limh→0{(x+2)+h}3−(x+2)3h
=limh→0(x+2)3+h3+3h(x+2)2+3(x+2)h2−(x+2)3h
=limh→0 3(x+2)3−3(x+2)h+h2=3(x+2)2
(xii) We have,
f(x)=x3+4x2+3x+2
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0(x+h)3+4(x+h)2+3(x+h)+2−(x3+4x2+3x+2)h
On solving we get,
=limh→0x3+h3+3x2h+3h2x+4x2+4h2+8hx+3x+3h+2−x3−4x2−3x−2h
=limh→03x2h+3xh2+h3+4h2+8hx+3hh
=limh→03x2+3xh+h2+4h+8x+3=3x2+8x+3
(xiii) We have,
f(x)=x3−5x2+x−5
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0{(x+h)3+(x+h)−5(x+h)2−5}−(x3−5x2+x−5)h
=limh→0(x3+h3+3x2h+3h2x+x+h−5x2−5h2−10xh−5)−(x3−5x2+x−5)h
=limh→0(3x2h+3h2x+h3+h−5h2−10xh)h
=limh→0 3x2+3xh+h2+1−5h−10x=3x2−10x+1
(xiv) We have,
f(x)=√2x2+1
∵ f′(x)=limh→0f(x+h)−f(x)h
=limh→0√2(x+h)2+1−√2x2+1h
Multiplying Numerator and Denominator by √2(x+h)2+1+√2x2+1
=limh→0{2(x+h)2+1−(2x2+1)}h(√2(x+h)2)+√2x2+1=limh→02x2+2h2+4xh+1−2x2−1h(√2(x+h)2+1+√2x2+1)
=limh→04xh+2h2(√2(x+h)2+1+√2x2+1)=4x2√2x2+1
=2x√2x2+1
(xv) We have, f(x)=2x+3x−2
Therefore,
f′(x)=limh→0f(a+h)−f(a)h
=limh→0(2x+2h+3x+h−2)−(2x+3x−2)h
=limh→02x2+2hx+3x−4x−4h−6−2x2−2hx+4x−3x−3h+6h(x+h−2)(x−2)
=limh→0−7(x+h−2)(x−2)=−7(x−2)2