CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate each the following from first principles :

(i) 2x

(ii) 1x

(iii) 1x3

(iv) x2+1x

(v) x21x

(vi) x+1x+2

(vii) x+23x+5

(viii) k xn

(ix) 13x

(x) x2+x+3

(xi) (x+2)3

(xii) x3+4x2+3x+2

(xiii) (x2+1)(x5)

(xiv) 2x2+1

(xv) 2x+3x2

Open in App
Solution

(i) We have,

f(x)=limh0f(x+h)f(x)h

=limh0f2x+h2xh

=limh0(2x2x2h)hx(x+h)

=limh02(xxh)hx(x+h)

=limh02hh.x(x+h)

=limh02x(x+h)

=2x2

(ii) We have,

f(x)=limh0f(x+h)f(x)h

=limh01x+y1xh

=limh01x+y1xh

=limh0xx+hxx+h.h×x+x+hx+x+h.h

=limh0x(x+h)xx+h.h(x+x+h)

=limh0hxx+h.h(x+x+h)

=limh01xx+y+x(x+h)

=limh012xx

=12x32

(iii) We have,

f(x) 1x3

f(x)=limh0f(x+h)f(x)h

=limh01(x+h)31x3h

=limh0x3(x+h)3x3h(x+h)3

=limh0x3(x3+3x2h+3xh2+h3)x3h(x+h)3

=limh0x3x33x23xhh2x3h(x+h)3

=limh03x23xhh2x3(x+h)3

=3x2x6=34

(iv) We have,

f(x)=x2+1x

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)2+1(x+h)x2+1xh

=limh0x[x2+h2+2xh+1](x2+1)(x+h)hx(x+h)

=limh0x3+xh2+2x2h+xx3xx2hhhx(x+h)

=limh0xh+2x2x21x(x+h)

=x21x2=11x2

(v) We have,

f(x)=x21x

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)21(x+h)x21xh

=limh0x(x2+h2+2xh1)(x+h)(x21)x(x+h)h

=limh0xh+2x2x2+1x(x+h)

=x2+1x2=1+1x2

(vi) We have,

f(x)=x+1x+2

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)+1(x+h)+2x+1x+2h=limh0(x+2)(x+h+1)(x+1)(x+h+2)(x+h+2)(x+2)h

=limh0(x2+2x+xh+2h+2+x)(x2+xh+2x+x+h+2)(x+h+2)(x+2)h

=limh0h(x+h+2)(x+2)h=1(x+2)2

(vii) We have x+23x+5

f(x)=x+23x+5

f(x)=limh0f(x+h)f(x)h

=limh0(x+h+2)3(x+h)+5x+23x+5h=limh0(3x+5)(x+h+2)(x+2)(3x+3h+5)(3x+5)(3x+3h+5)h

=limh0(3x2+5x+3xh+5h+6x+10)(3x2+3xh+5x+6x+6h+10)(3x+5)(3x+3h+5)h

=limh0h(3x+h)(3x+3h+5)h=limh01(3x+h)(3x+3h+5)=1(3x+5)2

(viii) We have,

f(x)=kxn

f(x)=limh0f(x+h)f(x)h

=limh0k(x+h)nkxnh

=k limh0(xn+nxn1h+(n1)2xn2h2+....)xnh =[ (x+y)n=xn+nxn1y...]

=k limh0nxn1+n(n1)2!xn2h+n(n1)(n2)3!xn3h2....

=k nxn1+0+0....=k nxn1

(ix) We have,

f(x)=13x

f(x)=limh0f(x+h)f(x)h

=limh013(x+h)13xh=limh03x3(x+h)3x3(x+h)×h [Rationalising the numerator by 3x+3(x+h)1]

=limh03x3(x+h)3x3(x+h)h×31+3(x+h)3x+3(x+h)

=limh0(3x)(3(x+h))3x3(x+h)×h(3x)+3(x+h)

=limh0h3x3(x+h)×h(3x+3(x+h))

=1(3x)×23x=12(3x)32

(x) We have,

f(x)=x2+x+3

f(x)=limh0f(x+h)f(x)h

=limh0{(x+h)2+(x+h)+3}x2+x+3h

=limh0x2+h2+2xh+x+h+3x2x3h

=limh02xh+h2+hh=limh0h(2x+h+1)h=2x+0+1=2x+1

(xi) We have,

f(x)=(x+2)3

f(x)=limh0f(x+h)f(x)h

=limh0(x+h+2)3(x+2)3h=limh0{(x+2)+h}3(x+2)3h

=limh0(x+2)3+h3+3h(x+2)2+3(x+2)h2(x+2)3h

=limh0 3(x+2)33(x+2)h+h2=3(x+2)2

(xii) We have,

f(x)=x3+4x2+3x+2

f(x)=limh0f(x+h)f(x)h

=limh0(x+h)3+4(x+h)2+3(x+h)+2(x3+4x2+3x+2)h

On solving we get,

=limh0x3+h3+3x2h+3h2x+4x2+4h2+8hx+3x+3h+2x34x23x2h

=limh03x2h+3xh2+h3+4h2+8hx+3hh

=limh03x2+3xh+h2+4h+8x+3=3x2+8x+3

(xiii) We have,

f(x)=x35x2+x5

f(x)=limh0f(x+h)f(x)h

=limh0{(x+h)3+(x+h)5(x+h)25}(x35x2+x5)h

=limh0(x3+h3+3x2h+3h2x+x+h5x25h210xh5)(x35x2+x5)h

=limh0(3x2h+3h2x+h3+h5h210xh)h

=limh0 3x2+3xh+h2+15h10x=3x210x+1

(xiv) We have,

f(x)=2x2+1

f(x)=limh0f(x+h)f(x)h

=limh02(x+h)2+12x2+1h

Multiplying Numerator and Denominator by 2(x+h)2+1+2x2+1

=limh0{2(x+h)2+1(2x2+1)}h(2(x+h)2)+2x2+1=limh02x2+2h2+4xh+12x21h(2(x+h)2+1+2x2+1)

=limh04xh+2h2(2(x+h)2+1+2x2+1)=4x22x2+1

=2x2x2+1

(xv) We have, f(x)=2x+3x2

Therefore,

f(x)=limh0f(a+h)f(a)h

=limh0(2x+2h+3x+h2)(2x+3x2)h

=limh02x2+2hx+3x4x4h62x22hx+4x3x3h+6h(x+h2)(x2)

=limh07(x+h2)(x2)=7(x2)2


flag
Suggest Corrections
thumbs-up
1
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon