f(x)=log√4−x2e
differentiating on both sides
∴f′(x)=d(log√4−x2e)dx
=1√4−x2d(√4−x2)dx
(∵d(lny)dx=1ydydx)
=1√4−x2(−2x2√4−x2)
=−x4−x2
∴f′(x)=−x4−x2
Let f:[0,√3]→[0,π3+loge2] defined f(x)=loge √x2+1+tan−1x then f(x) is