Differentiate sin xx using the first principle.
Let y=sin xx
Let δy be an increment in y, corresponding to an increment δx in x.
Then,y+δy=sin(x+δx)(x+δx)
⇒δy={sin(x+δx)(x+δx)−sin xx}={x sin (x+δx)−(x+δx)sin x}x(x+δx)
⇒δyδx={x sin (x+δx)−(x+δx)sin x}x(x+δx).δx
⇒dydx=limδx→0 δyδx
=limδx→0{x sin (x+δx)−(x+δx)sin x}x(x+δx).δx
limδx→0x[sin (x+δx)−sin x]−(δx)sin xx(x+δx).δx =limδx→0x[2cos(x+δx2)sin(δx2)−(δx)sin x]x(x+δx).δx
={limδx→0cos(x+δx2).limδx→0sin(δx/2)(δ/2)limδx→01(x+δx)−limδx→0sin xx(x+δx)}
=(cos x×1×1x)−sin xx2=(cos xx−sin xx2)=(x cos x−sin x)x2
Hence,ddx(sin xx)=(x cos x−sin x)x2