Given:
f(x)=sin√2x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above in above expression, we get:
⇒f′(x)=limh→0sin√2(x+h)−sin√2xh
Applying the formula,
sin C−sin D=2 cos(C+D2)sin(C−D2),
we get
⇒f′(x)=limh→02 cos(√2(x+h)+√2x2)sin(√2(x+h)−√2x2)h
⇒f′(x)=limh→0sin(√2(x+h)−√2x2)(√2(x+h)−√2x2)×(√2(x+h)−√2x2h)×2 cos(√2(x+h)+√2x2)
⇒f′(x)=limh→0sin(√2(x+h)−√2x2)(√2(x+h)−√2x2)×⎛⎜
⎜⎝2(x+h)−2xh(√2(x+h)+√2x)⎞⎟
⎟⎠×cos(√2(x+h)+√2x2)
⇒f′(x)=limh→0sin(√2(x+h)−√2x2)(√2(x+h)−√2x2)×(2√2(x+h)+√2x)×cos(√2(x+h)+√2x2)
⇒f′(x)=1×(2√2(x+0)+√2x)×cos(√2(x+0)+√2x2)
[∵limh→0sin(h)h=1]
⇒f′(x)=cos(√2x)√2x
Therefore, the derivative of sin√2x is cos√2x√2x