wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(i) sin2x

Open in App
Solution

Given:
f(x)=sin2x

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above in above expression, we get:
f(x)=limh0sin2(x+h)sin2xh

Applying the formula,

sin Csin D=2 cos(C+D2)sin(CD2),

we get



f(x)=limh02 cos(2(x+h)+2x2)sin(2(x+h)2x2)h


f(x)=limh0sin(2(x+h)2x2)(2(x+h)2x2)×(2(x+h)2x2h)×2 cos(2(x+h)+2x2)

f(x)=limh0sin(2(x+h)2x2)(2(x+h)2x2)×⎜ ⎜2(x+h)2xh(2(x+h)+2x)⎟ ⎟×cos(2(x+h)+2x2)

f(x)=limh0sin(2(x+h)2x2)(2(x+h)2x2)×(22(x+h)+2x)×cos(2(x+h)+2x2)

f(x)=1×(22(x+0)+2x)×cos(2(x+0)+2x2)

[limh0sin(h)h=1]

f(x)=cos(2x)2x

Therefore, the derivative of sin2x is cos2x2x

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon