Given:
f(x)=√sin2x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0√sin(2x+2h)−√sin2xh
Rationalizing the numerator, we get:
f′(x)=limh→0√sin(2x+2h)−√sin2xh×√sin(2x+2h)+√sin2x√sin(2x+2h)+√sin2x
f′(x)=limh→0sin(2x+2h)−sin2xh(√sin(2x+2h)+√sin2x)
Applying the formula,
sinC−sinD=2cos(C+D2)sin(C−D2), we get
⇒f′(x)
=limh→02cos(2x+2h+2x2)sin(2x+2h−2x2)h(√sin(2x+2h)+√sin2x)
⇒f′(x)=limh→02cos(2x+h)(√sin(2x+2h)+√sin2x).sinhh
⇒f′(x)=2cos(2x+0)(√sin(2x+0)+√sin2x)
[∵limh→0sinhh=1]
⇒f′(x)=cos2x√sin2x