wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(i) sin2x

Open in App
Solution

Given:

f(x)=sin2x

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0sin(2x+2h)sin2xh

Rationalizing the numerator, we get:

f(x)=limh0sin(2x+2h)sin2xh×sin(2x+2h)+sin2xsin(2x+2h)+sin2x

f(x)=limh0sin(2x+2h)sin2xh(sin(2x+2h)+sin2x)

Applying the formula,

sinCsinD=2cos(C+D2)sin(CD2), we get

f(x)

=limh02cos(2x+2h+2x2)sin(2x+2h2x2)h(sin(2x+2h)+sin2x)

f(x)=limh02cos(2x+h)(sin(2x+2h)+sin2x).sinhh

f(x)=2cos(2x+0)(sin(2x+0)+sin2x)

[limh0sinhh=1]

f(x)=cos2xsin2x

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon