wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(i) tan2x

Open in App
Solution

Given:
f(x)=tan2x

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0tan2(x+h)tan2xh

f(x)=limh0[tan(x+h)+tan x][tan(x+h)tan x]h

f(x)=limh0[tan(x+h)+tan x]h×[tan(x+h)tan x]1+tan(x+h)tan x×[1+tan(x+h)tan x]

f(x)=limh0(tan(x+h)+tan x)(1+tan(x+h)tan x)×tan[(x+h)x]h

f(x)=limh0(tan(x+h)+tan x)(1+tan(x+h)tan x)×tan hh

f(x)=(tan(x+0)+tan x)(1+tan(x+0)tan x)×1 [limx0tan xx=1]

f(x)=(2 tan x)(1+tan2x)

f(x)=2 tan x sec2x

Therefore, the derivative of tan2x is 2 tan x sec2x

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon