Given:
f(x)=tan2x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0tan2(x+h)−tan2xh
⇒f′(x)=limh→0[tan(x+h)+tan x][tan(x+h)−tan x]h
⇒f′(x)=limh→0[tan(x+h)+tan x]h×[tan(x+h)−tan x]1+tan(x+h)tan x×[1+tan(x+h)tan x]
⇒f′(x)=limh→0(tan(x+h)+tan x)(1+tan(x+h)tan x)×tan[(x+h)−x]h
⇒f′(x)=limh→0(tan(x+h)+tan x)(1+tan(x+h)tan x)×tan hh
⇒f′(x)=(tan(x+0)+tan x)(1+tan(x+0)tan x)×1 [∵limx→0tan xx=1]
⇒f′(x)=(2 tan x)(1+tan2x)
⇒f′(x)=2 tan x sec2x
Therefore, the derivative of tan2x is 2 tan x sec2x