Given:
f(x)=cos√x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get;
⇒f′(x)=limh→0cos√x+h−cos√xh
Applying the formula,
cos C−cos D=−2 sin(C+D2)sin(C−D2)
we get
⇒f′(x)=limh→0−2 sin(√x+h+√x2)sin(√x+h−√x2)h
⇒f′(x)=−2limh→0sin(√x+h−√x2)(√x+h−√x2)×(√x+h−√x2)h×sin(√x+h+√x2)
⇒f′(x)=−limh→0sin(√x+h−√x2)(√x+h−√x2)×(√x+h−√x)(√x+h+√x)h(√x+h+√x)×sin(√x+h+√x2)
⇒f′(x)=−limh→0sin(√x+h−√x2)(√x+h−√x2)×1(√x+h+√x)×sin(√x+h+√x2)
⇒f′(x)=−(1)×1(√x+0+√x)×sin(√x+0+√x2)
[∵limh→0sin(h)h=1]
⇒f′(x)=−sin(√x)2√x
Therefore, the derivative of cos√x is −sin√x2√x