Given: f(x)=sinxx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0sin(x+h)x+h−sinxxh
f′(x)=limh→0xsin(x+h)−(x+h)sinxhx(x+h)
f′(x)=limh→0x(sinxcosh+cosxsinh)−xsinx−hsinxhx(x+h)
⇒f′(x)=limh→0xsinx(cosh−1)+xcosxsinh−hsinxhx(x+h)
⇒f′(x)=limh→0−2xsinxsin2h2hx(x+h)+limh→0xcosxsinhhx(x+h)+limh→0−hsinxhx(x+h)
⇒f′(x)=−2sinxlimh→01(x+h).sin2h2(h2)2.(h2)2h+limh→0cosx(x+h).sinhh+limh→0−sinxx(x+h)
⇒f′(x)=−2sinxlimx→01(x+h).h4+cosxx+0−sinxx(x+0)[∵limh→0sinhh=1]
⇒f′(x)=cosxx−sinxx2
⇒f′(x)=xcosx−sinxx2