wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(ii) sinxx

Open in App
Solution

Given: f(x)=sinxx

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0sin(x+h)x+hsinxxh


f(x)=limh0xsin(x+h)(x+h)sinxhx(x+h)

f(x)=limh0x(sinxcosh+cosxsinh)xsinxhsinxhx(x+h)

f(x)=limh0xsinx(cosh1)+xcosxsinhhsinxhx(x+h)

f(x)=limh02xsinxsin2h2hx(x+h)+limh0xcosxsinhhx(x+h)+limh0hsinxhx(x+h)

f(x)=2sinxlimh01(x+h).sin2h2(h2)2.(h2)2h+limh0cosx(x+h).sinhh+limh0sinxx(x+h)

f(x)=2sinxlimx01(x+h).h4+cosxx+0sinxx(x+0)[limh0sinhh=1]

f(x)=cosxxsinxx2

f(x)=xcosxsinxx2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon