Given:
f(x)=e3x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0e3(x+h)−e3xh
⇒f′(x)=limh→0e3xe3h−e3xh
⇒f′(x)=3limh→0e3x(e3h−1)3h
⇒f′(x)=3e3xlimh→0e3h−13h
⇒f′(x)=3e3x(1)(∵limx→0ex−1x=1)
⇒f′(x)=3e3x
Therefore, the derivative of e3x is 3e3x.