Given: f(x)=1x3
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) the above expression, we get:
⇒f′(x)=limh→01(x+h)3−1x3h
⇒f′(x)=limh→0x3−(x+h)3h(x+h)3x3
Applying formula,
(a+b)3=a3+3a2b+3ab2+b3, we get:
⇒f′(x)=limh→0x3−x3−3x2h−3xh2−h3h(x+h)3x3
⇒f′(x)=limh→0−3x2h−3xh2−h3h(x+h)3x3
⇒f′(x)=limh→0−3x2−3xh−h2(x+h)3x3
⇒f′(x)=−3x2x6
⇒f′(x)=−3x−4
Therefore, the derivative of 1x3 is −3x−4.