wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(iii) cosxx

Open in App
Solution

Given: f(x)=cosxx


The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0cos(x+h)x+hcosxxh

f(x)=limh0xcos(x+h)(x+h)cosxhx(x+h)

f(x)=limh0x(cosxcoshsinxsinh)xcosxhcosxhx(x+h)

f(x)=limh0xcosx(cosh1)hx(x+h)+limh0xsinxsinhhx(x+h)+limh0hcosxhx(x+h)

f(x)=cosxlimh01(x+h).sin2h2(h2)2.(h2)2hlimh0sinx(x+h).sinhhlimh0cosxx(x+h)


f(x)=cosxlimh01(x+h).h4sinxx+0cosxx(x+0)[limh0sinhh=1]

f(x)=sinxxcosxx2

f(x)=xsinxcosxx2

Therefore, the derivative of cosxx is
xsinxcosxx2.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon