Given: f(x)=cosxx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0cos(x+h)x+h−cosxxh
f′(x)=limh→0xcos(x+h)−(x+h)cosxhx(x+h)
f′(x)=limh→0x(cosxcosh−sinxsinh)−xcosx−hcosxhx(x+h)
f′(x)=limh→0xcosx(cosh−1)hx(x+h)+limh→0−xsinxsinhhx(x+h)+limh→0−hcosxhx(x+h)
f′(x)=−cosxlimh→01(x+h).sin2h2(h2)2.(h2)2h−limh→0sinx(x+h).sinhh−limh→0cosxx(x+h)
f′(x)=−cosxlimh→01(x+h).h4−sinxx+0−cosxx(x+0)[∵limh→0sinhh=1]
⇒f′(x)=−sinxx−cosxx2
⇒f′(x)=−xsinx−cosxx2
Therefore, the derivative of cosxx is
−xsinx−cosxx2.