Given:
f(x)=eax+b
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0ea(x+h)+b−eax+bh
⇒f′(x)=limh→0eax+beah−eax+bh
⇒f′(x)=limh→0eax+b(eah−1)h
⇒f′(x)=aeax+blimh→0eah−1ah
⇒f′(x)=aeax+b(1)(∵limx→0ex−1x=1)
⇒f′(x)=aeax+b
Therefore, the derivative of eax+b is aeax+b.