wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(iii) tan 2x

Open in App
Solution

Given:

f(x)=tan 2x

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0tan[2(x+h)]tan(2x)h

f(x)=limh0tan(2x+2h)tan(2x)h

f(x)=limh0sin(2x+2h)cos(2x+2h)sin(2x)cos(2x)h

f(x)=limh0sin(2x+2h)cos(2x)cos(2x+2h)sin(2x)h cos(2x+2h)cos(2x)

f=limh0sin(2x+2h2x)h cos(2x+2h)cos(2x)

f(x)=limh0sin(2h)2h×2cos(2x+2h)cos(2x)

f(x)=1×2cos(2x+0)cos(2x)

[limh0sin(h)h=1]

f(x)=2cos2(2x)

f(x)=2 sec2(2x)

Therefore, the derivative of tan 2x is 2 sec2(2x).

flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon