Given:
f(x)=tan 2x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0tan[2(x+h)]−tan(2x)h
⇒f′(x)=limh→0tan(2x+2h)−tan(2x)h
⇒f′(x)=limh→0sin(2x+2h)cos(2x+2h)−sin(2x)cos(2x)h
⇒f′(x)=limh→0sin(2x+2h)cos(2x)−cos(2x+2h)sin(2x)h cos(2x+2h)cos(2x)
⇒f′=limh→0sin(2x+2h−2x)h cos(2x+2h)cos(2x)
⇒f′(x)=limh→0sin(2h)2h×2cos(2x+2h)cos(2x)
⇒f′(x)=1×2cos(2x+0)cos(2x)
[∵limh→0sin(h)h=1]
⇒f′(x)=2cos2(2x)
⇒f′(x)=2 sec2(2x)
Therefore, the derivative of tan 2x is 2 sec2(2x).