Given:
f(x)=tan √x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0tan√x+h−tan√xh
⇒f′(x)=limh→0sin√x+h cos√x−sin√x cos√x+hh(cos√x+h cos√x)
⇒f′(x)=limh→0sin(√x+h−√x)h(cos√x+h cos√x)
⇒f′(x)=limh→0sin(√x+h−√x)(√x+h−√x)×(√x+h−√x)(√x+h+√x)h(√x+h+√x)×1(cos√x+h cos√x)
⇒f′(x)=limh→0sin(√x+h−√x)(√x+h−√x)×1(√x+h+√x)×1(cos√x+h cos√x)
⇒f′(x)=1×1(√x+0+√x)×1(cos√x+0 cos√x)
[∵limh→0sin(h)h=1]
⇒f′(x)=sec2√x2√x
Therefore, the derivative of tan√x is sec2√x2√x