wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(iii) tanx

Open in App
Solution

Given:
f(x)=tan x

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0tanx+htanxh

f(x)=limh0sinx+h cosxsinx cosx+hh(cosx+h cosx)

f(x)=limh0sin(x+hx)h(cosx+h cosx)

f(x)=limh0sin(x+hx)(x+hx)×(x+hx)(x+h+x)h(x+h+x)×1(cosx+h cosx)

f(x)=limh0sin(x+hx)(x+hx)×1(x+h+x)×1(cosx+h cosx)

f(x)=1×1(x+0+x)×1(cosx+0 cosx)

[limh0sin(h)h=1]

f(x)=sec2x2x

Therefore, the derivative of tanx is sec2x2x

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon