f(x)=x2+1x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)2+1x+h−x2+1xh
⇒f′(x)=limh→0x2+2xh+h2+1x+h−x2+1xh
⇒f′(x)=limh→0x3+2x2h+h2x+x−x3−x2h−x−hxh(x+h)
⇒f′(x)=limh→0x2h+h2x−hxh(x+h)
⇒f′(x)=limh→0x2+hx−1x(x+h)
⇒f′(x)=x2+0−1x(x+0)
⇒f′(x)=x2−1x2
⇒f′(x)=1−1x2
Therefore, the derivative of x2+1x is 1−1x2.