Given:
f(x)=√tan x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0√tan(x+h)−√tan xh
Rationalizing the numerator, we get:
⇒f′(x)
=limh→0√tan(x+h)−√tan xh×√tan(x+h)+√tan x√tan(x+h)+√tan x
⇒f′(x)=limh→0tan(x+h)−tan xh √tan(x+h)+√tan x
⇒f′(x)
=limh→0sin(x+h)cos x−cos(x+h)sin x(h√tan(x+h)+√tan x)cos(x+h)cos x
⇒f′(x)
=limh→0sin(x+h−x)h (√tan(x+h)+√tan x)cos(x+h)cos x
⇒f′(x)
=limh→0sin hh (√tan(x+h)+√tan x)cos(x+h)cos x
⇒f′(x)
=limh→0sin hh×1(√tan(x+h)+√tan x)cos(x+h)cos x
⇒f′(x)
=1×1(√tan(x+0)+√tan x)cos(x+0)cos x
⇒f′(x)=sec2x2√tan x
Therefore, the derivative of √tan x is sec2x2√tan x