Given:
f(x)=tan x2
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0tan(x+h)2−tan x2h
⇒f′(x)=limh→0sin(x+h)2cos x2−sin x2 cos(x+h)2h cos(x+h)2cos x2
⇒f′(x)=limh→0sin[(x+h)2−x2]h cos(x+h)2cos x2
⇒f′(x)=limh→0sin(h2+2hx)(h2+2hx)×(h2+2hx)h×1cos(x+h)2cos x2
⇒f′(x)=limh→0sin(h2+2hx)(h2+2hx)×(h+2x)×1cos(x+h)2cos x2
⇒f′(x)=1×(0+2x)×1cos(x+0)2cos x2
[∵limh→0sin(h)h=1]
⇒f′(x)=2x sec2x2
Therefore, the derivative of tan x2 is 2x sec2x2