Given:
f(x)=e√2x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0e√2(x+h)−e√2xh
f′(x)=limh→0e√2x(e√2(x+h)−√2x−1)h
f′(x)=limh→0e√2x⎛⎜
⎜
⎜
⎜⎝e⎛⎜
⎜⎝2(x+h)−2x√2(x+h)+√2x⎞⎟
⎟⎠−1⎞⎟
⎟
⎟
⎟⎠h
f′(x)=limh→0⎛⎜
⎜
⎜
⎜⎝e⎛⎜
⎜⎝2h√2(x+h)+√2x⎞⎟
⎟⎠−1⎞⎟
⎟
⎟
⎟⎠2h√2(x+h)+√2x×2e√2x√2(x+h)+√2x
⇒f′(x)=2e√2x√2(x+0)+√2x[∵limx→0ex−1x=1]
⇒f′(x)=e√2x√2x
Therefore, the derivative of e√2x is e√2x√2x