Given:
f(x)=xsinx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)sin(x+h)−xsinxh
⇒f′(x)=limh→0(x+h)(sinxcosh+cosxsinh)−xsinxh
⇒f′(x)=limh→0xsinx(cosh−1)+h(sinxcosh+cosxsinh)+xcosxsinhh
⇒f′(x)=limh→0xsinx(cosh−1)h+ limh→0h(sinxcosh+cosxsinh)h+ limh→0xcosxsinhh
⇒f′(x)=−xsinxlimh→02sin2h2h+sinxcos0+cosxsin0+xcosx
[∵limh→0sinhh=1]
⇒f′(x)=−2xsinxlimh→0sin2h2(h2)2×(h2)2h+sinx+xcosx
⇒f′(x)=−2xsinxlimh→0h4+sinx+xcosx
⇒f′(x)=sinx+xcosx