wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(ix) xsinx

Open in App
Solution

Given:

f(x)=xsinx

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in the above expression, we get:


f(x)=limh0(x+h)sin(x+h)xsinxh

f(x)=limh0(x+h)(sinxcosh+cosxsinh)xsinxh

f(x)=limh0xsinx(cosh1)+h(sinxcosh+cosxsinh)+xcosxsinhh


f(x)=limh0xsinx(cosh1)h+ limh0h(sinxcosh+cosxsinh)h+ limh0xcosxsinhh

f(x)=xsinxlimh02sin2h2h+sinxcos0+cosxsin0+xcosx

[limh0sinhh=1]

f(x)=2xsinxlimh0sin2h2(h2)2×(h2)2h+sinx+xcosx

f(x)=2xsinxlimh0h4+sinx+xcosx

f(x)=sinx+xcosx

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon