f(x)=x2−1x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) the above expression, we get:
⇒f′(x)=limh→0(x+h)2−1x+h−x2−1xh
⇒f′(x)=limh→0x2+2xh+h2−1x+h−x2−1xh
⇒f′(x)=limh→0x3+2x2h+h2x−x−x3−x2h+x+hxh(x+h)
⇒f′(x)=limh→0x2h+h2x+hxh(x+h)
⇒f′(x)=limh→0x2+hx+1x(x+h)
⇒f′(x)=x2+0+1x(x+0)
⇒f′(x)=x2+1x2
⇒f′(x)=1+1x2
Therefore, the derivative of x2−1x is 1+1x2.