Given:
f(x)=x+1x+2
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) the above expression, we get:
⇒f′(x)=limh→0x+h+1x+h+2−x+1x+2h
⇒f′(x)=limh→0(x+h+1)(x+2)−(x+h+2)(x+1)h(x+h+2)(x+2)
⇒f′(x)=limh→0(x+1)(x+2)+h(x+2)−[(x+2)(x+1)+h(x+1)]h(x+h+2)(x+2)
⇒f′(x)=limh→0h[(x+2)−(x+1)]h(x+h+2)(x+2)
⇒f′(x)=limh→0hh(x+h+2)(x+2)
⇒f′(x)=limh→01(x+h+2)(x+2)
⇒ f′(x)=1(x+2)2
Therefore, the derivative of x+1x+2 is 1(x+2)2.