wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(vi) sinx+cosx

Open in App
Solution

Given: f(x)=sinx+cosx

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0sin(x+h)+cos(x+h)sinxcosxh

Applying the formula,

sinCsinD=2cos(C+D2)sin(CD2)

cosCcosD=2sin(C+D2)sin(CD2)

f(x)=limh02cos(x+h+x2)sin(x+hx2)2sin(x+h+x2)sin(x+hx2)h

f(x)=2limh0cos(x+h2)sin(h2)sin(x+h2)sin(h2)h

f(x)=limh0[cos(x+h2)sin(x+h2)]sin(h2)h2

f(x)=cos(x+0)sin(x+0) [limh0sinhh=1]

f(x)=cosxsinx

Therefore, the derivative of sinx+cosx is
cosxsinx.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon