Given: f(x)=sinx+cosx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0sin(x+h)+cos(x+h)−sinx−cosxh
Applying the formula,
sinC−sinD=2cos(C+D2)sin(C−D2)
cosC−cosD=−2sin(C+D2)sin(C−D2)
⇒f′(x)=limh→02cos(x+h+x2)sin(x+h−x2)−2sin(x+h+x2)sin(x+h−x2)h
⇒f′(x)=2limh→0cos(x+h2)sin(h2)−sin(x+h2)sin(h2)h
⇒f′(x)=limh→0[cos(x+h2)−sin(x+h2)]sin(h2)h2
⇒f′(x)=cos(x+0)−sin(x+0) [∵limh→0sinhh=1]
⇒f′(x)=cosx−sinx
Therefore, the derivative of sinx+cosx is
cosx−sinx.