Given:
f(x)=(−x)−1
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→01−(x+h)−1−xh
⇒f′(x)=limh→0−1(x+h)+1xh
⇒f′(x)=limh→0−x+x+hhx(x+h)
⇒f′(x)=limh→0hhx(x+h)
⇒f′(x)=limh→01x(x+h)
⇒f′(x)=1x2