Given:
f(x)=x+23x+5
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) the above expression, we get:
⇒f′(x)=limh→0x+h+23(x+h)+5−x+23x+5h
⇒f′(x)=limh→0(x+h+2)(3x+5)−(3x+3h+5)(x+2)h(3x+3h+5)(3x+5)
⇒f′(x)=limh→0(x+2)(3x+5)+h(3x+5)−[(x+2)(3x+5)+3h(x+2)]h(3x+3h+5)(3x+5)
⇒f′(x)=limh→0−hh(3x+3h+5)(3x+5)
⇒f′(x)=−1(3x+5)2
Hence, the derivative of x+23x+5 is −1(3x+5)2