Given:
f(x)=sin(x+1)
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) the above expression, we get:
⇒f′(x)=limh→0sin(x+h+1)−sin(x+1)h
Applying the formula,
sinC−sinD=2cos(C+D2)sin(C−D2), we get
⇒f′(x)=limh→02cos(x+h+1+x+12)sin(x+h+1−x−12)h
⇒f′(x)=limh→02cos(2x+h+22)sin(h2)h
⇒f′(x)=limh→0cos(2x+h+22)sin(h2)h2
⇒f′(x)=cos(2x+0+22)×1(∵limx→0sinxx=1)
⇒f′(x)=cos(x+1)
Therefore, the derivative of sin(x+1) is cos(x+1).