Given:
f(x)=x2+x+3
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)2+x+h+3−(x2+x+3)h
⇒f′(x)=limh→0x2+h2+2xh+h−x2h
⇒f′(x)=limh→0h2+2xh+hh
⇒f′(x)=limh→0(h+2x+1)
⇒f′(x)=0+2x+1
⇒f′(x)=2x+1
Therefore, the derivative of x2+x+3 is 2x+1.