Givne:
f(x)=xcosx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)cos(x+h)−xcosxh
⇒f′(x)=limh→0(x+h)(cosxcosh−sinxsinh)−xcosxh
⇒f′(x)=limh→0xcosx(cosh−1)h− limh→0xsinxsinhh+ limh→0h(cosxcosh−sinxsinh)h
⇒f′(x)=−xcosxlimh→02sin2h2h−xsinx+cosxcos0−sinxsin0
[∵limh→0sinhh=1]
⇒f′(x)=−2xcosxlimh→0sin2h2(h2)2×(h2)2h−xsinx+cosx
⇒f′(x)=−2xcosxlimh→0h4−xsinx+cosx
⇒f′(x)=cosx−xsinx