wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(x) xcosx

Open in App
Solution

Givne:

f(x)=xcosx

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h


Putting f(x) in the above expression, we get:


f(x)=limh0(x+h)cos(x+h)xcosxh

f(x)=limh0(x+h)(cosxcoshsinxsinh)xcosxh


f(x)=limh0xcosx(cosh1)h limh0xsinxsinhh+ limh0h(cosxcoshsinxsinh)h

f(x)=xcosxlimh02sin2h2hxsinx+cosxcos0sinxsin0

[limh0sinhh=1]

f(x)=2xcosxlimh0sin2h2(h2)2×(h2)2hxsinx+cosx

f(x)=2xcosxlimh0h4xsinx+cosx

f(x)=cosxxsinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon