Given:
f(x)=a√x
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0a√(x+h)−a√xh
f′(x)=limh→0a√x(a√(x+h)−√x−1)h
f′(x)=limh→0a√x⎛⎜
⎜
⎜
⎜⎝a⎛⎜
⎜⎝(x+h)−x√(x+h)+√x⎞⎟
⎟⎠−1⎞⎟
⎟
⎟
⎟⎠h
f′(x)=limh→0a√x⎛⎜
⎜
⎜
⎜⎝a⎛⎜
⎜⎝h√(x+h)+√x⎞⎟
⎟⎠−1⎞⎟
⎟
⎟
⎟⎠h√(x+h)+√x×1√(x+h)+√x
⇒f′(x)=a√xlogea×1√(x+0)+√x
[∵limx→0ax−1x=logea]
⇒f′(x)=a√x2√xlogea
Therefore, the derivative of a√x is a√x2√xlogea