Given:
f(x)=(x+2)3
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h+2)3−(x+2)3h
⇒f′(x)=limh→0⎡⎢⎣(x+2)3+h3+3h(x+2){(x+2)+h}⎤⎥⎦−(x+2)3h
⇒f′(x)=limh→0h3+3h(x+2){(x+2)+h}h
⇒f′(x)=limh→0[h2+3(x+2){(x+2)+h}]
⇒f′(x)=3(x+2)(x+2+0)
⇒f′(x)=3(x+2)2
Therefore, the derivative of (x+2)3 is 3(x+2)2.