wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(xii) 3x2

Open in App
Solution

Given:
f(x)=3x2

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:
f(x)=limh03(x+h)23x2h

f(x)=limh03x2(3(x+h)2x21)h

f(x)=limh03x2(3(x+h)2x21)(x+h)2x2×(x+h)2x2h

f(x)=limh03x2(3(x+h)2x21)(x+h)2x2×2hx+h2h

f(x)=limh03x2(3(x+h)2x21)(x+h)2x2×(2x+h)

[limx0ax1x=logea]

f(x)=3x2×loge3×(2x+0)

f(x)=2x(3x2)loge3

Therefore, the derivative of 3x2 is 2x(3x2)loge3

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon