Givne:
f(x)=x3+4x2+3x+2
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)3+4(x+h)2+3(x+h)+2−(x3+4x2+3x+2)h
⇒f′(x)=limh→0[(x+h)3−x3]+4[(x+h)2−x2]+3hh
⇒f′(x)=limh→0[h{(x+h)2+x2+x(x+h)}]4h(2x+h)+3hh
⇒f′(x)=limh→0[(x+h)2+x2+x(x+h)+4(2x+h)+3]
⇒f′(x)=x2+x2+x2+8x+3
⇒f′(x)=3x2+8x+3
Hence, the derivative of x3+4x2+3x+2 is 3x2+8x+3