wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(xii) x3+4x2+3x+2

Open in App
Solution

Givne:

f(x)=x3+4x2+3x+2

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h


Putting f(x) in the above expression, we get:

f(x)=limh0(x+h)3+4(x+h)2+3(x+h)+2(x3+4x2+3x+2)h

f(x)=limh0[(x+h)3x3]+4[(x+h)2x2]+3hh

f(x)=limh0[h{(x+h)2+x2+x(x+h)}]4h(2x+h)+3hh

f(x)=limh0[(x+h)2+x2+x(x+h)+4(2x+h)+3]

f(x)=x2+x2+x2+8x+3

f(x)=3x2+8x+3

Hence, the derivative of x3+4x2+3x+2 is 3x2+8x+3

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon