Differentiate given problems w.r.t.x.
cos−1x2√2x+7−2<x<2.
Let y = cos−1x2√2x+7−2<x<2
Differentiating w.r.t . x, we get
dydx=√2x+7ddx(cos−1x2)−cos−1x2ddx(√2x+7)2x+7
[∵ddx(uv)=vddx(u)−uddx(v)v2]
=√2x+7−1√1−(x24)12−cos−1(x2)22√2x+72x+7
=−√2x+7√4−x2−cos−1(x2)√2x+72x+7 =−{2x+7+cos−1(x2)√4−x2}√4−x2(2x+7)3/2
=−[1√4−x2√2x+7+cos−1x2(2x+7)3/2]