Differentiate given problems w.r.t.x.
sin−1(x √x),0≤x≤1.
Let y = sin−1(x √x)
Differentiating w.r.t.x, we get
dydx=ddx(sin−1x √x),0≤x≤1
dydx=ddx(x3/2)√1−(x√2)2⇒dydx=32(x1/2)√1−x2→⇒dydx=32√x√1−x3
cot−1[√1+sin x+√1−sin x√1+sin x−√1−sin x],0<x<π2.
Differentiate given problems w.r.t.x. (sin x−cos x)(sin x−cos x)
sin3 x +cos6 x.
Differentiate given problems w.r.t.x. cos(a cos x+b sin x),for some constants a and b.