Differentiate given problems w.r.t.x.
xx2−3+(x−3)x2,for x>3
Let y=xx2−3+(x−3)x2,for x>3
⇒ y=u+v
Differentiating both sides w.r.t. x, we get
dydx=dudx+dvdx
Now, u=xx2−3
Taking log on both sides,
log u=log xx2−3
Differentiating both sides w.r.t.x, we get
1ududx=(x2−3).1x+2x log x
dudx=u[x2−3x+2x log x]
dudx=xx2−3[x2−3x+2x log x]
Now, v=(x−3)x2
Takign log on both sides,
log v=log (x−3)x2=x2log(x−3)(∵log mn=n log m)
Differentiating both sides w.r.t.x, we get
1vdvdx=(x2)ddxlog(x−3)+log(x−3)ddxx2=x21x−3+2x log(x−3)
dvdx=v[x2x−3+2x log (x−3)]
dvdx=xx2−3[x2x−3+2x log (x−3)]
Putting the values of dudx and dvdx in Eq. (i), we get
dvdx=xx2−3[x2−3x+2x log x]+(x−x)x2[x2x−3+2x log (x−3)]