wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate given problems w.r.t.x.
xx+xa+ax+aa, for some fixed a>0 and x>0.

Open in App
Solution

ddxxx+xa+ax+aa

ddx(xx)+ddx(xa)+ddx(ax)+ddx(aa)

=(xx)ddx(xlogx)+axa1+ax log a

(ddx(uv)=(uv)ddx(v log u))

=xx(x1x+log x.1)+axa1+axlog a

=xx(1+log x)+axa1+ax log a

Alternative method

Let y=xx+xa+ax+aa,

Let u=xxy=u+xa+ax+aa,

dydx=dudx+ddx+xaddxax+ddxaa

dydx=dudx+axa1+ax log a

Now, u=xx

Taking log on both sides,

log u = log xx = x log x [log mn=n log m]

Differentiating both sides w.r.t.x, we get

1u=dudxlog x+x(1x)=1+log xdudx=u(1+log x)=xx(1+log x)

Putting dudx in Eq. (i), we get dydx=xx(1+log x) + axa1+log a


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon