Differentiate given problems w.r.t.x.
xx+xa+ax+aa, for some fixed a>0 and x>0.
ddxxx+xa+ax+aa
⇒ ddx(xx)+ddx(xa)+ddx(ax)+ddx(aa)
=(xx)ddx(xlogx)+axa−1+ax log a
(∵ddx(uv)=(uv)ddx(v log u))
=xx(x1x+log x.1)+axa−1+axlog a
=xx(1+log x)+axa−1+ax log a
Alternative method
Let y=xx+xa+ax+aa,
Let u=xx⇒y=u+xa+ax+aa,
⇒ dydx=dudx+ddx+xaddxax+ddxaa
⇒ dydx=dudx+axa−1+ax log a
Now, u=xx
Taking log on both sides,
⇒ log u = log xx = x log x [∵log mn=n log m]
Differentiating both sides w.r.t.x, we get
⇒1u=dudxlog x+x(1x)=1+log x⇒dudx=u(1+log x)=xx(1+log x)
Putting dudx in Eq. (i), we get dydx=xx(1+log x) + axa−1+log a