wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate

(i) xx x

(ii) xsin x-cos x+x2-1x2+1

(iii) xx cos x+x2+1x2-1

(iv) x cos xx+x sin x1/x

(v) x+1xx+x1+1x

(vi) esin x+tan xx

(vii) cos xx+sin x1/x

(viii) xx2-3+x-3x2

Open in App
Solution

(i)
Let y=xxx ...iTaking log on both sides,logy=logxxxlogy=logxx+logx12 logy=x logx+12logx
Differentiating with respect to x,
1ydydx=xddxlogx+logxddxx+12ddxlogx 1ydydx=x1x+logx1+121x1ydydx=1+logx+12xdydx=y1+logx+12xdydx=xxx1+logx+12x using equation idydx=xx+122x+12x+logx


ii Let y=xsinx-cosx+x2-1x2+1 y=elogxsinx-cosx+x2-1x2+1y=esinx-cosxlogx+x2-1x2+1
Differentiate it with respect to x using chain rule,
dydx=ddxesinx-cosxlogx+ddxx2-1x2+1 =esinx-cosxlogxddxsinx-cosxlogx+x2+1ddxx2-1-x2-1ddxx2+1x2+12 =elogxsinx-cosxsinx-cosxddxlogx+logxddxsinx-cosx+x2+12x-x2-12xx2+12 =xsinx-cosxsinx-cosx1x+logxsinx+cosx+2x3+2x-2x3+2xx2+12 =xsinx-cosxsinx-cosxx+sinx+cosxlogx+4xx2+12

iii Let y=xx cosx+x2+1x2-1Also, Let u=xx cosx and v=x2+1x2-1 y=u+vdydx=dudx+dvdx ...iNow, u=xx cosxlog u=logxx cosxlog u=x cosx logx
Differentiating both sides with respect to x,
1ududx=cosx logxddxx+xlogxddxcosx+x cosxddxlogxdudx=ucosx logx+x-sinxlogx+x cosx1xdudx=xx cosxcosx logx-x sinx logx+cosxdudx=xx cosxcosx1+logx-x sinx logx ...2Again, v=x2+1x2-1log v=logx2+1-logx2-1
Differentiating both sides with respect to x,
1vdvdx=2xx2+1-2xx2-1dvdx=v2xx2-1-2xx2+1x2+1x2-1dvdx=x2+1x2-1-4xx2+1x2-1dvdx=-4xx2-12 ...3From i,ii and iii, we obtaindydx=xx cosxcosx1+logx-x sinx logx-4xx2-12

iv Let y=x cosxx+x sinx1x Also, Let u=x cosxx and v=x sinx1x y=u+vdydx=dudx+dvdx ...iNow, u=x cosxxlog u=logx cosxxlog u=x logx cosxlog u=xlogx+log cosxlog u=xlogx+xlog cosx
Differentiate both sides with respect to x,
1ududx=ddxx logx+ddxx log cosxdudx=ulogxddxx+xddxlogx+log cosxddxx+xddxlog cosxdudx=x cosxxlogx1+x1x+log cosx1+x1cosxddxcosxdudx=x cosxxlogx+1+log cosx+xcosx-sinxdudx=x cosxx1+logx+log cosx-x tanxdudx=x cosxx1-x tanx+logx+log cosxdudx=x cosxx1-x tanx+logx cosx ...iiAgain,v=x sinx1xlog v=logx sinx1xlog v=1xlogx sinxlog v=1xlogx+log sinxlog v=1xlogx+1xlog sinx
Differentiating both sides with respect to x,
1vdvdx=ddx1xlogx+ddx1xlogsinx1vdvdx=logxddx1x+1xddxlogx+logsinxddx1x+1xddxlogsinx1vdvdx=logx-1x2+1x1x+logsinx-1x2+1x1sinxddxsinx1vdvdx=1x21-logx+-logsinxx2+1x sinxcosxdvdx=x sinx1x1-logxx2+-logsinx+x cotxx2dvdx=x sinx1x1-logx-logsinx+x cotxx2dvdx=x sinx1x1-logxsinx+x cotxx2 ...iiiFrom i,ii and iii, we obtaindydx=x cosxx1-x tanx+logx cosx+x sinx1xx cotx+1-logx sinxx2

v Let y=x+1x x+x1+1xAlso, Let u=x+1x x and v=x1+1x y=u +vdydx=dudx+dvdx ...iThen, u=x+1x x log u=logx+1x xlog u=x logx+1x
Differentiate both sides with respect to x,
1ududx=logx+1xddxx+xddxlogx+1x1ududx= logx+1x+x1x+1xddxx+1xdudx=ulogx+1x+xx+1x×1-1x2dudx=x+1xxlogx+1x+x-1xx+1xdudx=x+1xxlogx+1x+x2-1x2+1dudx=x+1xxx2-1x2+1+logx+1xAgain, v=x1+1xlog v=logx1+1xlog v=1+1xlog x
Differentiating both sides with respect to x,
1vdvdx=logxddx1+1x+1+1xddxlogx 1vdvdx=-1x2logx+1+1x1x 1vdvdx=-logxx2+1x+1x2dvdx=v-logx+x+1x2dvdx=x1+1xx+1-logxx2 ...iiiFrom i,ii and iii, we obtaindydx=x+1xxx2-1x2+1+logx+1x+x1+1xx+1-logxx2

vi Let y=esinx+tanxx y=esinx+elogtanxxy=esinx+exlogtanx
Differentiating with respect to x,
dydx=ddxesinx+ddxexlogtanx =esinxddxsinx+exlogtanxddxx logtanx =esinxcosx+elogtanxxxddxlogtanx+logtanxddxx =esinxcosx+tanxxxtanxsec2x+logtanx =esinxcosx+tanxxxsecxcosecx+logtanx

viii Let y=cosxx+sinx1xy=elogcosxx+elogsinx1xy=exlogcosx+e1xlogsinx
Differentiating with respect to x,
dydx=ddxex logcosx+ddxe1xlog sinx =ex logcosx×ddxx logcosx+e1xlog sinxddx1xlogsinx =elogcosxx× xddxlogcosx+logcosx × ddxx+elogsinx1x×1xddxlogsinx+logsinxddx1x =cosxxx1cosxddxcosx+logcosx1+sin1x1x×1sinx×ddxsinx+logsinx-1x2 =cosxxx1cosx-sinx+logcosx+sinx1x1x×1sinxcosx-1x2logsinx =cosxxlogcosx-x tanx+sinx1xcotxx-1x2logsinx

viii Let y=xx2-3+x-3x2 Also, let u=xx2-3 and v=x-3x2 y=u+v
Differentiate both sides with respect to x,
dydx=dudx+dvdx ...iNow, u=xx2-3log u=logxx2-3 log u=x2-3 logx
Differentiating with respect to x,
1ududx=logxddxx2-3+x2-3ddxlogx1ududx=logx2x+x2-31xdudx=xx2-3x2-3x+2x logxAlso, v=x-3x2log v=logx-3x2log v=x2logx-3
Differentiating both sides with respect to x,
1vdvdx=logx-3ddxx2+x2ddxlogx-31vdvdx=logx-3 2x+x21x-3ddxx-3dvdx=v2x logx-3+x2x-3×1dvdx=x-3x2x2x-3+2xlogx-3
Substituing the expressions ofdudxand dvdxin equation idydx=xx2-3x2-3x+2x logx+x-3x2x2x-3+2x logx-3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon