Let u=1+2 tanx , v= 5+4 cosx
Then u′=2sec2x, v′=−4sinx
Using product rule:
ddx(uv)=uv′+vu′
ddx(1+2tanx)(5+4cosx)
=(1+2tan x)(−4sin x)+(5+4cos‘x)(2sec2 x)
=−4sin x−8 tan x sin x+10sec2x+8sec x
=−4sin x+10sec2x(8cos x−8sin2 xcos x)
=−4sin x+10sec2x+8(cos2xcosx)
=−4sin x+10sec2x+8 cos x
2nd method
(1+2tan x)(5+4cos x)=5+4cos x+10tan x+8sin x
Now, we have,
ddx[(1+2tan x)(5+4cos x)]
=ddx[5+4cos x+10tan x+8sin x]=−4sin x+10sec2x+8cos x
Using both the methods, we get the same answer.