wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate (logx)x+xlogx with respect to x.

Open in App
Solution

y=(logx)x+xlogx

Let y=a+b

dydx=?

a=(logx)x

loga=xlogx1adadx=logx+xx=1+lnx

dadx=a(1+lnx)=(logx)x(1+lnx)

b=xlogx

logb=(logx).x

1b.dbdx=1x.x+logx

dbdx=b(1+logx)=xlogx(1+logx)

dydx=dadx+dbdx=(logx)x(1+logx)+xlogx(1+logx)=(1+logx)((logx)x+xlogx)

dydx=(1+logx)y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon