Let f(x)=secx
∴f(x+h)sec(x+h)
ddxf(x)=limh→0[f(x+h)−f(x)h]
ddx(secx)=limh→0[sec(x+h)−secxh]
ddx(secx)=limh→0[1h(1cos(x+h)−1cosx)]
ddx(secx)=limh→0[1h(cos(x)−cos(x+h)cos(x+h)cosx)]
ddx(secx)=limh→0⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣1h2sin(2x+h2)sin(x+h−x2)h.cos(x+h)cosx⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
and ddx(secx)=limh→0⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣sin(x+h2)cos(x+h)cosx⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ⋅limh→0⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣sinh2h2⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
ddx(secx)=sinxcosx⋅cosx×1
ddx(secx)=secx⋅tanx.