1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Chain Rule of Differentiation
Differentiate...
Question
Differentiate
sin
-
1
4
x
1
-
4
x
2
with respect to
1
-
4
x
2
, if
(i)
x
∈
-
1
2
2
,
1
2
2
(ii)
x
∈
1
2
2
,
1
2
(iii)
x
∈
-
1
2
,
-
1
2
2
Open in App
Solution
i
Let
,
u
=
sin
-
1
4
x
1
-
4
x
2
put
2
x
=
cos
θ
⇒
u
=
sin
-
1
2
×
cos
θ
1
-
cos
2
θ
⇒
u
=
sin
-
1
2
cos
θ
sin
θ
⇒
u
=
sin
-
1
sin
2
θ
.
.
.
i
Let
,
v
=
1
-
4
x
2
.
.
.
ii
Here
,
x
∈
-
1
2
2
,
1
2
2
⇒
2
x
∈
-
1
2
,
1
2
⇒
θ
∈
π
4
,
3
π
4
So
,
from
equation
i
,
u
=
π
-
2
θ
Since
,
sin
-
1
sinθ
=
π
-
θ
,
if
θ
∈
π
2
,
π
⇒
u
=
π
-
2
cos
-
1
2
x
Since
,
2
x
=
cos
θ
Differentiating it with respect to x,
d
u
d
x
=
0
-
2
-
1
1
-
2
x
2
d
d
x
2
x
⇒
d
u
d
x
=
2
1
-
4
x
2
2
⇒
d
u
d
x
=
4
1
-
4
x
2
.
.
.
iii
from
equation
ii
d
v
d
x
=
-
4
x
1
-
4
x
2
but
,
x
∈
-
1
2
,
-
1
2
2
d
v
d
x
=
-
4
-
x
1
-
4
-
x
2
⇒
d
v
d
x
=
4
x
1
-
4
x
2
.
.
.
iv
Diferentiating
equation
ii
with
respect
to
x
,
d
v
d
x
=
1
2
1
-
4
x
2
d
d
x
1
-
4
x
2
⇒
d
v
d
x
=
1
2
1
-
4
x
2
-
8
x
⇒
d
v
d
x
=
-
4
x
1
-
4
x
2
.
.
.
v
Dividing
equation
iii
by
v
d
u
d
x
d
v
d
x
=
4
1
-
4
x
2
×
1
-
4
x
2
-
4
x
∴
d
u
d
v
=
-
1
x
ii
Let
,
u
=
sin
-
1
4
x
1
-
4
x
2
put
2
x
=
cos
θ
u
=
sin
-
1
2
×
cos
θ
1
-
cos
2
θ
⇒
u
=
sin
-
1
2
cos
θ
sin
θ
⇒
u
=
sin
-
1
sin
2
θ
.
.
.
i
Let
,
v
=
1
-
4
x
2
.
.
.
ii
Here
,
x
∈
1
2
2
,
1
2
⇒
2
x
∈
1
2
,
1
⇒
cos
θ
∈
1
2
,
1
⇒
θ
∈
0
,
π
4
So
,
from
equation
i
,
u
=
2
θ
Since
,
sin
-
1
sinθ
=
θ
,
if
θ
∈
-
π
2
,
π
2
⇒
u
=
2
cos
-
1
2
x
Since
,
2
x
=
cos
θ
Differentiate it with respect to x,
d
u
d
x
=
2
-
1
1
-
2
x
2
d
d
x
2
x
d
u
d
x
=
-
2
1
-
4
x
2
2
d
u
d
x
=
-
4
1
-
4
x
2
.
.
.
iii
Diferentiating
equation
ii
with
respect
to
x
,
d
v
d
x
=
1
2
1
-
4
x
2
d
d
x
1
-
4
x
2
⇒
d
v
d
x
=
1
2
1
-
4
x
2
-
8
x
⇒
d
v
d
x
=
-
4
x
1
-
4
x
2
.
.
.
iv
Dividing
equation
iii
by
iv
d
u
d
x
d
v
d
x
=
-
4
1
-
4
x
2
×
1
-
4
x
2
-
4
x
∴
d
u
d
v
=
1
x
iii
Let
,
u
=
sin
-
1
4
x
1
-
4
x
2
put
,
2
x
=
cos
θ
⇒
u
=
sin
-
1
2
×
cos
θ
1
-
cos
2
θ
⇒
u
=
sin
-
1
2
cos
θ
sin
θ
⇒
u
=
sin
-
1
sin
2
θ
.
.
.
i
Let
,
v
=
1
-
4
x
2
.
.
.
ii
Here
,
x
∈
-
1
2
,
-
1
2
2
⇒
2
x
∈
-
1
,
-
1
2
⇒
θ
∈
3
π
4
,
π
So
,
from
equation
i
,
u
=
π
-
2
θ
Since
,
sin
-
1
sinθ
=
π
-
θ
,
if
θ
∈
π
2
,
3
π
2
⇒
u
=
π
-
2
cos
-
1
2
x
Since
,
2
x
=
cos
θ
Differentiate it with respect to x,
d
u
d
x
=
0
-
2
-
1
1
-
2
x
2
d
d
x
2
x
⇒
d
u
d
x
=
2
1
-
4
x
2
2
⇒
d
u
d
x
=
4
1
-
4
x
2
.
.
.
iii
from
equation
ii
,
d
v
d
x
=
-
4
x
1
-
4
x
2
but
,
x
∈
-
1
2
,
-
1
2
2
∴
d
v
d
x
=
-
4
-
x
1
-
4
-
x
2
⇒
d
v
d
x
=
4
x
1
-
4
x
2
.
.
.
iv
Dividing
equation
iii
by
iv
d
u
d
x
d
v
d
x
=
4
1
-
4
x
2
×
1
-
4
x
2
4
x
∴
d
u
d
v
=
1
x
Suggest Corrections
0
Similar questions
Q.
Differentiate
sin
-
1
1
-
x
2
with respect to
cos
-
1
x
,
if
(i)
x
∈
0
,
1
(ii)
x
∈
-
1
,
0
Q.
Differentiate
sin
-
1
2
x
1
-
x
2
with respect to
sec
-
1
1
1
-
x
2
, if
(i)
x
∈
0
,
1
2
(ii)
x
∈
1
2
,
1
Q.
Differentiate
sin
-
1
2
x
+
1
·
3
x
1
+
36
x
with respect to x.
Q.
∫
1
−
x
4
x
2
−
4
x
−
3
d
x
Q.
Differentiate
t
a
n
−
1
(
1
+
2
x
1
−
2
x
)
with respect to
√
1
+
4
x
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Explore more
Chain Rule of Differentiation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app