wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate sin1(2x1x2) with respect to x, if
1<x<12

Open in App
Solution

Let y=sin1(2x1x2)


On differentiating both sides w.r.t x, we have

dydx=ddx(sin1(2x1x2))

We know that,

ddx(sin1x)=11x2

Therefore,

dydx=ddx(sin1(2x1x2))

dydx=11(2x1x2)2×ddx(2x1x2)

dydx=11(4x2(1x2))×(21x2+2x21x2×(02x))

dydx=11(4x24x4)×(21x22x21x2)

dydx=114x2+4x4×(2(1x2)2x21x2)

dydx=1(12x2)2×(24x21x2)

dydx=1(12x2)×(2(12x2)1x2)

dydx=21x2

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon