Let y=sin−1(2x√1−x2)
On differentiating both sides w.r.t x, we have
dydx=ddx(sin−1(2x√1−x2))
We know that,
ddx(sin−1x)=1√1−x2
Therefore,
dydx=ddx(sin−1(2x√1−x2))
dydx=1√1−(2x√1−x2)2×ddx(2x√1−x2)
dydx=1√1−(4x2(1−x2))×(2√1−x2+2x2√1−x2×(0−2x))
dydx=1√1−(4x2−4x4)×(2√1−x2−2x2√1−x2)
dydx=1√1−4x2+4x4×(2(1−x2)−2x2√1−x2)
dydx=1√(1−2x2)2×(2−4x2√1−x2)
dydx=1(1−2x2)×(2(1−2x2)√1−x2)
dydx=2√1−x2
Hence, this is the answer.