wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate sinxcosx+cosxsinx with respect to x.

Open in App
Solution

Let y=sinxcosx+cosxsinx=u+v

u=sinxcosx
logu=cosxlogsinx
Differentiate w.r.t. x
1ududx=cosxddxlogsinx+logsinxddxcosx
1ududx=cosx×1sinx×cosxlogsinx×sinx
1ududx=cosx×cotxsinx×logsinx
dudx=sinxcosx[cosxcotxsinxlogsinx]

v=cosxsinx
logv=sinx×logcosx
Differentiate w.r.t. x
1vdvdx=sinxddxlogcosx+logcosx×ddxsinx
1vdvdx=sinx×1cosx×(sinx)+logcosx×cosx
1vdvdx=sinx×tanx+cosx×logcosx
dvdx=cosxsinx[sinxtanx+cosxlogcosx]

dydx=dudx+dvdx
dydx={sinxcosx[cosxcotxsinxlogsinx]}+ {cosxsinx[sinxtanx+cosxlogcosx]}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon