Let y=sinxcosx+cosxsinx=u+v
u=sinxcosx
logu=cosxlogsinx
Differentiate w.r.t. x
1ududx=cosxddxlogsinx+logsinxddxcosx
1ududx=cosx×1sinx×cosx−logsinx×sinx
1ududx=cosx×cotx−sinx×logsinx
dudx=sinxcosx[cosx⋅cotx−sinx⋅logsinx]
v=cosxsinx
logv=sinx×logcosx
Differentiate w.r.t. x
1vdvdx=sinxddxlogcosx+logcosx×ddxsinx
1vdvdx=sinx×1cosx×(−sinx)+logcosx×cosx
1vdvdx=−sinx×tanx+cosx×logcosx
dvdx=cosxsinx[−sinx⋅tanx+cosx⋅logcosx]
dydx=dudx+dvdx
∴dydx={sinxcosx[cosx⋅cotx−sinx⋅logsinx]}+ {cosxsinx[−sinx⋅tanx+cosx⋅logcosx]}