The correct option is C 12√(x−1)(x−2)(x−3)(x−4)(x−5)[1x−1+1x−2−1x−3−1x−4−1x−5]
Let y=√(x−1)(x−2)(x−3)(x−4)(x−5)
Taking logarithm on both sides, we get
logy=log√(x−1)(x−2)(x−3)(x−4)(x−5)
=12[log(x−1)+log(x−2)−log(x−3)−log(x−4)−log(x−5)] ....................(Since logab=loga−logb and logab=loga+logb)
Differentiating both sides w.r.t. x, we get
1ydydx=12(1x−1ddx(x−1)+1x−2ddx(x−2)−1x−3ddx(x−3)−1x−4ddx(x−4)−1x−5ddx(x−5))
∴dydx=12√(x−1)(x−2)(x−3)(x−4)(x−5)[1x−1+1x−2−1x−3−1x−4−1x−5]