wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate tan1{1+a2x21ax} w.r.t x.

Open in App
Solution

Given m=tan1(1+a2x21ax)

Let x=tanθa so putting this in above equation we get,
m=tan1⎜ ⎜ ⎜ ⎜ ⎜ ⎜1+a2tan2θa21a×tanθa⎟ ⎟ ⎟ ⎟ ⎟ ⎟
=tan1(1+tan2θ1tanθ)
=tan1(secθ1tanθ)
=tan1(1cosθsinθ)
=tan1⎜ ⎜ ⎜2sin2θ22sinθ2cosθ2⎟ ⎟ ⎟
=tan1(tanθ2)

Now, putting the value of θ=tan1ax
m=tan1ax2
So,dmdx=1211+a2x2ddx(ax)=a2(1+a2x2) .......(1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon