wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate tan1(1x21x) with respect to sin1(2x1+x2), when x0.

Open in App
Solution

y=tan1(1+x21x)
y=tan1(1+tan2θ1tanθ)
Put x=tanθ
tan1(secθ1tanθ)=tan1⎜ ⎜ ⎜1cosθ1sinθcosθ⎟ ⎟ ⎟=tan1(1cosθsinθ)
=tan1⎜ ⎜ ⎜2sin2θ22sinθ2cosθ2⎟ ⎟ ⎟=tan1(tanθ2)=θ2
dydθ=12
Let z=sin1(2x1+x2)=sin1(2tanθ1+tan2θ)=sin1(sin2θ)=2θ
dzdθ=2
Now, dydz=dydθ.dθdz=12.12=14..

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon