wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate tan1(1x2x) with respect to cos1(2x1x2), where x0.

Open in App
Solution

Let u=tan1[1x2x]

Put x=cosθ
u=tan1[1cos2θcosθ]

u=tan1[sinθcosθ]

u=tan1[tanθ]
u=θ

u=cos1x
dudx=11x2

Let v=cos1[2x1x2]
Put x=sinθ
So,
v=cos1[2sinθ1sin2θ]
v=cos1[2sinθcosθ]
cos1[sin2θ]
cos1[cos(π22θ)]

v=π22θ

v=π22sin1x

v=21x2

Now,
dudv=dudx×dxdv=11x2×1x22=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon