wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate : tan1(x2+a2+xx2+a2x) w.r.t x

Open in App
Solution

y=tan1(x2+a2+xx2+a2x)
dydx=11+(x2+a2+xx2+a2x)2ddx(x2+a2+xx2+a2x)
=(x2+a2x)2(x2+a2x)2+(x2+a2+x)2×(x2+a2x)ddx(x2+a2+x)(x2+a2+x)ddx(x2+a2x)(x2+a2x)2
=(x2+a2x)2(x2+a2x)2+(x2+a2+x)2×(x2+a2x)(2x2x2+a2+1)(x2+a2+x)(2x2x2+a21)(x2+a2x)2
=(x2+a2x)2(x2+a2x)2+(x2+a2+x)2×(x2+a2x)(xx2+a2+1)(x2+a2+x)(xx2+a21)(x2+a2x)2
=xx2+a2(x2+a2xx2+a2x)+1(x2+a2x+x2+a2+x)(x2+a2+x)2+(x2+a2x)2
=xx2+a2×2x+2x2+a2(x2+a2+x)2+(x2+a2x)2
=2x2+2xx2+a2(x2+a2)(x2+a2+x22xx2+a2+x2+a2+x2+2xx2+a2)
=2x2+2xx2+a2(x2+a2)(4x2+2a2)
=x2+xx2+a2(x2+a2)(2x2+a2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon