We have
tan−1(x√1−x2) w.r.t sec−1(12x2−1)
Let put
x=cosθ ,Then θ=cos−1x
So,
tan−1(x√1−x2) sec−1(1√2x2−x1)
tan−1(cos θ√1−cos2θ) sec−1(1√2cos2θ−1)
⇒tan−1 cotθ sec−1 sec 2θ
⇒θ , 2θ
cos−1x , 2 cos1x
let
u = cos−1x, v=2 cos−1x
On. Diff. with respect to x,
dudx=−1√1−x2, dvd=−2√1−x2
According to given question.
dudv=1√1−x2−2√1−x2
dudv=12
Hence, this is the answer.